+ All Categories
Home > Documents > Fabricacion Del Acero

Fabricacion Del Acero

Date post: 23-Dec-2015
Category:
Upload: francisco-chorres
View: 237 times
Download: 0 times
Share this document with a friend
Description:
proceso
18
EL ACERO El Acero es básicamente una aleación o combinación de hierro y carbono (alrededor de 0,05% hasta menos de un 2%). Algunas veces otros elementos de aleación específicos tales como el Cr (Cromo) o Ni (Níquel) se agregan con propósitos determinados. Ya que el acero es básicamente hierro altamente refinado (más de un 98%), su fabricación comienza con la reducción de hierro (producción de arrabio) el cual se convierte más tarde en acero. El hierro puro es uno de los elementos del acero, por lo tanto consiste solamente de un tipo de átomos. No se encuentra libre en la naturaleza ya que químicamente reacciona con facilidad con el oxígeno del aire para formar óxido de hierro - herrumbre. El óxido se encuentra en cantidades significativas en el mineral de hierro, el cual es una concentración de óxido de hierro con impurezas y materiales térreos. ESTRUCTURA DEL ACERO Las propiedades físicas de los aceros y su comportamiento a distintas temperaturas dependen sobre todo de la cantidad de carbono y de su distribución en el hierro. Antes del tratamiento térmico, la mayor parte de los aceros son una mezcla de tres sustancias: ferrita, perlita y cementita. La ferrita, blanda y dúctil, es hierro con pequeñas cantidades de carbono y otros elementos en disolución. La cementita, un compuesto de hierro con el 7% de carbono aproximadamente, es de gran dureza y muy quebradiza. La perlita es una profunda mezcla de ferrita y cementita, con una composición específica y una estructura característica, y sus propiedades físicas son intermedias entre las de sus dos componentes.
Transcript
Page 1: Fabricacion Del Acero

EL ACERO

El Acero es básicamente una aleación o combinación de hierro y carbono (alrededor de 0,05% hasta menos de un 2%). Algunas veces otros elementos de aleación específicos tales como el Cr (Cromo) o Ni (Níquel) se agregan con propósitos determinados.

Ya que el acero es básicamente hierro altamente refinado (más de un 98%), su fabricación comienza con la reducción de hierro (producción de arrabio) el cual se convierte más tarde en acero.

El hierro puro es uno de los elementos del acero, por lo tanto consiste solamente de un tipo de átomos. No se encuentra libre en la naturaleza ya que químicamente reacciona con facilidad con el oxígeno del aire para formar óxido de hierro - herrumbre. El óxido se encuentra en cantidades significativas en el mineral de hierro, el cual es una concentración de óxido de hierro con impurezas y materiales térreos.

ESTRUCTURA DEL ACERO

Las propiedades físicas de los aceros y su comportamiento a distintas temperaturas dependen sobre todo de la cantidad de carbono y de su distribución en el hierro. Antes del tratamiento térmico, la mayor parte de los aceros son una mezcla de tres sustancias: ferrita, perlita y cementita.

La ferrita, blanda y dúctil, es hierro con pequeñas cantidades de carbono y otros elementos en disolución.

La cementita, un compuesto de hierro con el 7% de carbono aproximadamente, es de gran dureza y muy quebradiza.

La perlita es una profunda mezcla de ferrita y cementita, con una composición específica y una estructura característica, y sus propiedades físicas son intermedias entre las de sus dos componentes.

La resistencia y dureza de un acero que no ha sido tratado térmicamente depende de las proporciones de estos tres ingredientes. Cuanto mayor es el contenido en carbono de un acero, menor es la cantidad de ferrita y mayor la de perlita: cuando el acero tiene un 0,8% de carbono, está por completo compuesto de perlita. El acero con cantidades de carbono aún mayores es una mezcla de perlita y cementita.

Al elevarse la temperatura del acero, la ferrita y la perlita se transforman en una forma alotrópica de aleación de hierro y carbono conocida como austenita, que tiene la propiedad de disolver todo el carbono libre presente en el metal.

Page 2: Fabricacion Del Acero

Si el acero se enfría despacio, la austenita vuelve a convertirse en ferrita y perlita, pero si el enfriamiento es repentino la austenita se convierte en martensita, una modificación alotrópica de gran dureza similar a la ferrita pero con carbono en solución sólida

Elementos del Acero

Aluminio: Se usa en algunos aceros de nitruración al Cr-Al-Mo de alta dureza en concentraciones cercanas al 1 % y en porcentajes inferiores al 0,008 % como desoxidante en aceros de alta aleación.

Boro: En muy pequeñas cantidades (0,001 al 0,006 %) aumenta la templabilidad sin reducir la maquinabilidad, pues se combina con el carbono para formar carburos proporcionando un revestimiento duro. Es usado en aceros de baja aleación.

Cobalto: Muy endurecedor. Disminuye la templabilidad. Mejora la resistencia y la dureza en caliente. Es un elemento poco habitual en los aceros. Aumenta las propiedades magnéticas de los aceros. Se usa en los aceros rápidos para herramientas y en aceros refractarios.

Cromo: Forma carburos muy duros y comunica al acero mayor dureza, resistencia y tenacidad a cualquier temperatura. Solo o aleado con otros elementos, mejora la resistencia a la corrosión. Se usa en aceros inoxidables, aceros para herramientas y refractarios. También se utiliza en revestimientos embellecedores o recubrimientos duros de gran resistencia al desgaste, como émbolos, ejes, etc.

Molibdeno: Es un elemento habitual del acero y aumenta mucho la profundidad de endurecimiento de acero, así como su tenacidad.

Nitrógeno: Se agrega a algunos aceros para promover la formación de austenita.

Níquel: Es un elemento gammágeno permitiendo una estructura austenítica a temperatura ambiente, que aumenta la tenacidad y resistencia al impacto. El níquel se utiliza mucho para producir acero inoxidable, porque aumenta la resistencia a la corrosión.

Plomo: El plomo no se combina con el acero, se encuentra en él en forma de pequeñísimos glóbulos, como si estuviese emulsionado, lo que favorece la fácil mecanización por arranque de viruta, (torneado, cepillado, taladrado, etc.) ya que el plomo es un buen lubricante de corte, el porcentaje debe limitarse el contenido de carbono a valores inferiores al 0,5 % debido a que dificulta el templado y disminuye la tenacidad en caliente. Se añade a algunos aceros para mejorar mucho la maquinabilidad.

Silicio: Aumenta moderadamente la templabilidad. Se usa como elemento desoxidante. Aumenta la resistencia de los aceros bajos en carbono.

Titanio: Se usa para estabilizar y desoxidar el acero, mantiene estables las propiedades del acero a alta temperatura. Se utiliza su gran afinidad con el Carbono para evitar la formación de carburo de hierro al soldar acero.

Vanadio: Posee una enérgica acción desoxidante y forma carburos complejos con el hierro, que proporcionan al acero una buena

Page 3: Fabricacion Del Acero

resistencia a la fatiga, tracción y poder cortante en los aceros para herramientas.

Impurezas en el acero

Se procura eliminarlas o reducir su contenido debido a que son perjudiciales para las propiedades de la aleación.

Azufre: límite máximo aproximado: 0,04 %. El azufre con el hierro forma sulfuro, el que, conjuntamente con la austenita, da lugar a un eutéctico cuyo punto de fusión es bajo y que, por lo tanto, aparece en bordes de grano. Cuando los lingotes de acero colado deben ser laminados en caliente, dicho eutéctico se encuentra en estado líquido, lo que provoca el desgranamiento del material.

Fósforo: límite máximo aproximado: 0,04 %. El fósforo resulta perjudicial, ya sea al disolverse en la ferrita, pues disminuye la ductibilidad, como también por formar FeP (fosfuro de hierro). Aunque se considera un elemento perjudicial en los aceros, porque reduce la ductilidad y la tenacidad, haciéndolo quebradizo, a veces se agrega para aumentar la resistencia a la tensión y mejorar la maquinabilidad.

PROPIEDADES MECÁNICAS DEL ACERO

Resistencia al desgaste: Es la resistencia que ofrece un material a dejarse erosionar cuando está en contacto de fricción con otro material.

Tenacidad: Es la capacidad que tiene un material de absorber energía sin producir Fisuras (resistencia al impacto).

Maquinabilidad: Es la facilidad que posee un material de permitir el proceso de mecanizado por arranque de viruta.

Dureza: Es la resistencia que ofrece un acero para dejarse penetrar. Se mide en unidades BRINELL (HB) o unidades ROCKWEL C (HRC), mediante test del mismo nombre.

TRATAMIENTO TÉRMICO DE LOS ACEROS

Los tratamientos térmicos consisten en someter al acero a una combinación de operaciones de calentamiento y enfriamiento con tiempos determinados, con el fin de variar las proporciones de sus constituyentes y así producir las propiedades deseadas sobre él. Las variaciones de las propiedades en el material que se producen como resultado del tratamiento térmico deben ser permanentes, de lo contrario el tratamiento térmico no tendría ningún sentido.

Los tratamientos térmicos más utilizados son el temple, el revenido, el recocido y la normalización. Todos los procedimientos se basan en la transformación o descomposición de la austenita. Por tanto, el primer paso en cualquier tratamiento térmico de un acero será calentar el material a la temperatura que conlleve la formación de la austenita.

La temperatura y el tiempo son los factores principales que influyen en un tratamiento térmico y hay que fijarlos siempre de antemano, de acuerdo con

Page 4: Fabricacion Del Acero

la composición del acero, la forma y el tamaño de las piezas que se desean obtener.

Por medio de la representación gráfica temperatura frente a tiempo se puede caracterizar cualquier tratamiento térmico. De una manera muy generalizada se pueden considerar los siguientes puntos importantes: la temperatura máxima de calentamiento, Tmax, hasta la cual se calienta el material durante el tratamiento térmico, el tiempo que se mantiene a la temperatura máxima y las velocidades de calentamiento y de enfriamiento.

TEMPLADO

El temple se aplica cuando se quiere conseguir un acero de elevada dureza y resistencia mecánica. El inconveniente es que aporta fragilidad a la pieza templada.

Consiste en obtener un acero formado por una gran proporción de martensita. Como la martensita, se obtienen por enfriamiento rápido de la austenita, el tratamiento consiste en:

Calentar el acero hasta que toda su masa se transforme en austenita. Según el porcentaje de carbono del acero, la temperatura a la que será necesario llegar (AC3) será más alta o más baja.

Enfriar rápidamente la muestra para asegurar que toda la austenita se ha transformado en martensita. A medida que se produce el enfriamiento, la temperatura a la que comienza la transformación de austenita a martensita se denomina temperatura inicio de martensita (Ms); y la temperatura a la cual la transformación termina, temperatura fin de martensita (Mf). La temperatura Ms disminuye a medida que aumenta el porcentaje en peso de carbono de la aleación.

Para conseguir el templado de una pieza es necesario enfriarla a una velocidad ligeramente superior a la mínima. En algunos casos, pueden producirse deformaciones o fracturas si se aplican velocidades de enfriamiento excesivas.

Propiedades mejoradas:

• Alta resistencia al desgaste

• Dureza excelente

• Ductilidad mejorada (revenido)

• Resistencia a tracción

RECOCIDO

Page 5: Fabricacion Del Acero

El principal objetivo del recocido es ablandar el acero eliminando posibles tensiones o anomalías internas de su estructura que puedan haberse originado como consecuencia de algún tratamiento previo (forja, laminación, etc.), que endurezcan el material.

El recocido disminuye la dureza y aumenta la plasticidad de un acero para así poderlo deformar y trabajar más fácilmente.

REVENIDO

El revenido se aplica cuando se quiere aumentar la tenacidad y ductibilidad de los aceros que han estado sometidos al temple.

El tratamiento consiste en un calentamiento de la martensita inferior a 723°C y un enfriamiento posterior al aire, en aceite o en agua, según la composición del acero. De esta manera se consigue aumentar la tenacidad y ablandar el acero templado al reducir las tensiones internas de este. El revenido conlleva una disminución de la dureza, de la resistencia mecánica y del límite elástico.

NORMALIZADO

El normalizado del acero consiste en un calentamiento hasta la temperatura de austenización y enfriamiento al aire libre a velocidad más lenta que el templado pero más rápido que el recocido.

El objetivo del normalizado es producir un acero más duro y resistente que el obtenido por enfriamiento más lento, en horno, al someterle a un recocido. El normalizado también se aplica después que un acero se ha deformado, ya sea en frío o en caliente con el fin de eliminar las posibles tensiones internas producidas por la deformación. Otro de los objetivos que persigue la normalización es la reducción del tamaño de los granos de acero con el fin de mejorar las propiedades mecánicas de éste.

CLASIFICACIÓN DEL ACERO

Los diferentes tipos de acero se clasifican de acuerdo a los elementos de aleación que producen distintos efectos en el Acero:

Aceros al carbono: Más del 90% de todos los aceros son aceros al carbono. Estos aceros contienen diversas cantidades de carbono y menos del 1,65% de manganeso, el 0,60% de silicio y el 0,60% de cobre. Entre los productos fabricados con aceros al carbono figuran máquinas, carrocerías de automóvil, la mayor parte de las estructuras de construcción de acero, cascos de buques, somieres y horquillas.

Aceros aleados: Estos aceros contienen una proporción determinada de vanadio, molibdeno y otros elementos, además de cantidades mayores de manganeso, silicio y cobre que los aceros al carbono normales. Estos aceros de aleación se pueden clasificar en: Estructurales:Son aquellos aceros que se emplean para diversas partes de máquinas, tales como engranajes, ejes y palancas. Además se utilizan en las estructuras de edificios, construcción de chasis de automóviles,

Page 6: Fabricacion Del Acero

puentes, barcos y semejantes. El contenido de la aleación varía desde 0,25% a un 6%. Para Herramientas:Aceros de alta calidad que se emplean en herramientas para cortar y modelar metales y no-metales. Por lo tanto, son materiales empleados para cortar y construir herramientas tales como taladros, escariadores, fresas, terrajas y machos de roscar. Especiales:Los Aceros de Aleación especiales son los aceros inoxidables y aquellos con un contenido de cromo generalmente superior al 12%. Estos aceros de gran dureza y alta resistencia a las altas temperaturas y a la corrosión, se emplean en turbinas de vapor, engranajes, ejes y rodamientos.

Aceros de baja aleación ultrarresistentesEsta familia es la más reciente de las cuatro grandes clases de acero. Los aceros de baja aleación son más baratos que los aceros aleados convencionales ya que contienen cantidades menores de los costosos elementos de aleación. Sin embargo, reciben un tratamiento especial que les da una resistencia mucho mayor que la del acero al carbono.

Por ejemplo, los vagones de mercancías fabricados con aceros de baja aleación pueden transportar cargas más grandes porque sus paredes son más delgadas que lo que sería necesario en caso de emplear acero al carbono. Además, como los vagones de acero de baja aleación pesan menos, las cargas pueden ser más pesadas.

En la actualidad se construyen muchos edificios con estructuras de aceros de baja aleación. Las vigas pueden ser más delgadas sin disminuir su resistencia, logrando un mayor espacio interior en los edificios.

Aceros inoxidables

Los aceros inoxidables contienen cromo, níquel y otros elementos de aleación, que los mantienen brillantes y resistentes a la herrumbre y oxidación a pesar de la acción de la humedad o de ácidos y gases corrosivos. Algunos aceros inoxidables son muy duros; otros son muy resistentes y mantienen esa resistencia durante largos periodos a temperaturas extremas. Debido a sus superficies brillantes, en arquitectura se emplean muchas veces con fines decorativos.

El acero inoxidable se utiliza para las tuberías y tanques de refinerías de petróleo o plantas químicas, para los fuselajes de los aviones o para cápsulas espaciales. También se usa para fabricar instrumentos y equipos quirúrgicos, o para fijar o sustituir huesos rotos, ya que resiste a la acción de los fluidos corporales.

En cocinas y zonas de preparación de alimentos los utensilios son a menudo de acero inoxidable, ya que no oscurece los alimentos y pueden limpiarse con facilidad.

Page 7: Fabricacion Del Acero

Procesos modernos de obtención de acero

Por soplado: En el cual todo el calor procede del calor inicial de los materiales de carga, principalmente en estado de fusión.

Con horno de solera abierta: En el cual la mayor parte del calor proviene de la combustión del gas o aceite pesado utilizado como combustible; el éxito de este proceso se basa en los recuperadores de calor para calentar el aire y así alcanzar las altas temperaturas eficaces para la fusión de la carga del horno.

Eléctrico: En el cual la fuente de calor más importante procede de la energía eléctrica (arco, resistencia o ambos); este calor puede obtenerse en presencia o ausencia de oxígeno; por ello los hornos eléctricos pueden trabajar en atmósferas no oxidantes o neutras y también en vacío, condición preferida cuando se utilizan aleaciones que contienen proporciones importantes de elementos oxidables.

Page 8: Fabricacion Del Acero

RESULTADOS

EL ACERO, A BASE DE LA CHATARRA

Existe la posibilidad de reciclar la chatarra para la obtención del Acero ya que los procedimientos de fabricación son relativamente simples y económicos.

Presentan una interesante combinación de propiedades mecánicas, las que pueden modificarse dentro de un amplio rango variando los componentes de la aleación o aplicando tratamientos.

Su plasticidad permite obtener piezas de formas geométricas complejas con relativa facilidad, la experiencia acumulada en su utilización permite realizar predicciones de su comportamiento, reduciendo costos de diseño y plazos de puesta en el mercado.

En este proceso, la materia prima es la chatarra, a la que se le presta una especial atención, con el fin de obtener un elevado grado de calidad de la misma. Para ello, la chatarra es sometida a unos severos controles e inspecciones por parte del fabricante de acero, tanto en su lugar de origen como en el momento de la recepción del material en fábrica.

La calidad de la chatarra depende de tres factores:

De su facilidad para ser cargada en el horno;

De su comportamiento de fusión (densidad de la chatarra, tamaño, espesor, forma, etc.);

Page 9: Fabricacion Del Acero

De su composición, siendo fundamental la presencia de elementos residuales que sean difíciles de eliminar en el proceso del horno.

Atendiendo a su procedencia, la chatarra se puede clasificar en tres grandes grupos:

Chatarra reciclada: formada por despuntes, rechazos, etc. originados en la propia fábrica. Se trata de una chatarra de excelente calidad.

Chatarra de transformación: producida durante la fabricación de piezas y componentes de acero (virutas de máquinas herramientas, recortes de prensas y guillotinas, etc.).

Chatarra de recuperación: suele ser la mayor parte de la chatarra que se emplea en la acería y procede del desguace de edificios con estructura de acero, plantas industriales, barcos, automóviles, electrodomésticos, etc.

Principios básicos para la obtención del acero

La obtención del acero pasa por la eliminación de las impurezas que se encuentran en el arrabio o en las chatarras, y por el control, dentro de unos límites especificados según el tipo de acero, de los contenidos de los elementos que influyen en sus propiedades.

Las reacciones químicas que se producen durante el proceso de fabricación del acero requieren temperaturas superiores a los 1000 ºC para poder eliminar las sustancias perjudiciales, bien en forma gaseosa o bien trasladándolas del baño a la escoria.

PROCESOS DE FABRICACIÓN DE ACERO

Para empezar, las materias primas (o bien minerales de hierro o bien chatarra férrea, según el proceso) son convertidas en acero fundido. El proceso a base de mineral de hierro utiliza un alto horno y el proceso con la chatarra férrea recurre a un horno de arco eléctrico.

A continuación, el arrabio se solidifica mediante moldeo en una máquina de colada continua. Se obtiene así lo que se conoce como productos semiacabados. Pueden ser desbastes, si presentan un corte transversal rectangular, blooms o palanquillas, si tienen un corte transversal cuadrado. Son los formatos que se utilizan para formar el producto acabado.

Por último, estos productos semiacabados se transforman, o "laminan" en productos acabados. Algunos reciben un tratamiento térmico, conocido como "laminado en caliente". Más de la mitad de las chapas finas laminadas en caliente vuelven a ser laminadas a temperaturas ambientes (proceso "laminado en frío"). Posteriormente pueden ser recubiertas con un material protector anticorrosión

Page 10: Fabricacion Del Acero

Materiales y Proceso de Fabricación El Acero: Fabricación

cango flores kevin omar 13

Page 11: Fabricacion Del Acero

MÉTODOS DE REFINADO DE HIERRO

Aunque casi todo el hierro y acero que se fabrica en todo el mundo se obtienen a partir de arrabio producido en altos hornos, hay otros métodos de refinado del hierro que se han practicado de forma limitada. Uno de ellos es el denominado método directo para fabricar hierro y acero a partir del mineral, sin producir arrabio. En este proceso se mezclan mineral de hierro y coque en un horno de calcinación rotatorio y se calientan a una temperatura de unos 950 º C.

El coque caliente desprende monóxido de carbono, igual que en un alto horno, y reduce los óxidos del mineral a hierro metálico. Sin embargo, no tienen lugar las reacciones secundarias que ocurren un alto horno, y el horno de calcinación produce la llamada esponja de hierro, de mucha mayor pureza que el arrabio. También puede producirse hierro prácticamente puro mediante electrólisis, haciendo pasar una corriente eléctrica a través de una disolución de cloruro de hierro (II). Ni el proceso directo ni el electrolítico tienen importancia comercial significativa.

Acero de horno eléctrico.

En algunos hornos el calor para fundir y refinar el acero procede de la electricidad y no de la combustión de gas. Como las condiciones de refinado de estos hornos se pueden regular más efectivamente que las de los hornos de crisol abierto o los hornos básicos de oxígeno, los hornos eléctricos son sobre todo útiles para producir acero inoxidable y aceros aleados que deben ser fabricados según unas especificaciones muy exigentes. El refinado se produce en una cámara hermética, donde la temperatura y otras condiciones se controlan de forma rigurosa mediante dispositivos automáticos.

En las primeras fases de este proceso de refinado se inyecta oxígeno de alta pureza a través de una lanza, lo que aumenta la temperatura del horno y disminuye el tiempo necesario para producir el acero. La cantidad de oxígeno que entra en el horno puede regularse con precisión en todo momento, lo que evita reacciones de oxidación no deseadas.

Page 12: Fabricacion Del Acero

En la mayoría de los casos, la carga está formada casi exclusivamente por material de chatarra. Antes de poder utilizarla, la chatarra debe ser analizada y clasificada, porque su contenido en aleaciones afecta a la composición del metal refinado. También se añaden otros materiales, como pequeñas cantidades de mineral de hierro y cal seca, para contribuir a eliminar el carbono y otras impurezas. Los elementos adicionales para la aleación se introducen con la carga o después, cuando se vierte a la cuchara el acero refinado.

Una vez cargado el horno se hacen descender unos electrodos hasta la superficie del metal. La corriente eléctrica fluye por uno de los electrodos, forma un arco eléctrico hasta la carga metálica, recorre el metal y vuelve a formar un arco hasta el siguiente electrodo. La resistencia del metal al flujo de corriente genera calor que, junto con el producido por el arco eléctrico, funde el metal con rapidez. Hay otros tipos de horno eléctrico donde se emplea una espiral para generar calor.

Page 13: Fabricacion Del Acero

PROCESOS DE ACABADO

El acero se vende en una gran variedad de formas y tamaños, como varillas, tubos, rieles de ferrocarril o perfiles en H o en T. estas formas se obtienen en las instalaciones siderúrgicas laminando con lingotes calientes o modelándolos de algún otro modo. El acabado del acero mejora también su calidad al refinar su estructura cristalina y aumentar su resistencia.

El método principal de trabajar el acero se conoce como laminado en caliente. En este proceso, el lingote colado se calienta al rojo vivo en un horno denominado foso de termo-difusión y a continuación se hace pasar entre una serie de rodillos metálicos colocados en pares que lo aplastan hasta darle la forma y tamaño deseados. La distancia entre los rodillos va disminuyendo a medida que se reduce el espesor del acero.

El primer par de rodillos por el que pasa el lingote se conoce como tren de desbaste o de eliminación de asperezas. Después del tren de desbaste, el acero pasa a trenes de laminado en bruto y a los trenes de acabado que lo reducen a láminas con la sección transversal correcta. Los rodillos para producir rieles de ferrocarril o perfiles en H, en T o en L tienen estrías para proporcionar a forma adecuada.

Los procesos modernos de fabricación requieren gran cantidad de chapa de acero delgada. Los trenes o rodillos de laminado continuo producen tiras y láminas con anchuras de hasta 2,5 m. esos laminadores procesan con rapidez la chapa de acero antes de que se enfríe y no pueda ser trabajada. Las planchas de acero caliente de más de 10 cm de espesor se pasan por una serie de cilindros que reducen progresivamente su espesor hasta unos 0,1 cm y aumentan su longitud de 4 a 370 metros. Los trenes de laminado continuo están equipados con una serie de accesorios como rodillos de borde, aparatos

Page 14: Fabricacion Del Acero

de decapado o eliminación y dispositivos para enrollar de modo automático la chapa cuando llega al final del tren.

Los rodillos de borde son grupos de rodillos verticales situados a ambos lados de la lámina para mantener su anchura. Los aparatos de decapado eliminan la costra que se forma en la superficie de la lámina apartándola mecánicamente, retirándola mediante un chorro de aire o doblando de forma abrupta la chapa en algún punto del recorrido. Las bobinas de chapa terminadas se colocan sobre una cinta transportadora y se llevan a otro lugar para ser recocidas y cortadas en chapas individuales.

Una forma más eficiente para producir chapa de acero delgada es hacer pasar por los rodillos planchas de menor espesor. Con los métodos convencionales de fundición sigue siendo necesario pasar los lingotes por un tren de desbaste para producir planchas lo bastante delgadas para el tren de laminado continuo.

El sistema de colada continua, en cambio, produce una plancha continua de acero con un espesor inferior a 5 cm, lo que elimina la necesidad de trenes de desbaste y laminado en bruto.

El sistema de colada continua en cambio, produce una plancha continua de acero con un espesor inferior a 5 cm, lo que elimina la necesidad de trenes de desbaste y laminado en bruto.


Recommended