+ All Categories
Home > Documents > Presentasi 9 Juni

Presentasi 9 Juni

Date post: 20-Jul-2016
Category:
Upload: ilmamuslih
View: 18 times
Download: 2 times
Share this document with a friend
Description:
Boron Neutron Capture Therapy Neutron Collimator
19
Design of Collimator in The Radial Piercing Beam Port of Kartini Reactor for Boron Neutron Capture Therapy M. Ilma Muslih A, S.T. Yogyakarta - June 11, 2014
Transcript
Page 1: Presentasi 9 Juni

Design of Collimator in The Radial Piercing Beam Port of Kartini Reactor for Boron Neutron

Capture Therapy

M. Ilma Muslih A, S.T.

Yogyakarta - June 11, 2014

Page 2: Presentasi 9 Juni

I N T R O D U C T I O NBoron Neutron Capture Therapy

Medical patient was injected by boron compound before exposing Neutron thermal will be captured by Boron on cancer cell and selectively irradiate cancer cells that have taken up a sufficient amount of Boron and simultaneously spare normal cells

The products of this reaction have high linear energy transfer characteristics (α particle = 150 keV/µm, Lithium-7 = 175 keV/µm )Alpha Radiations will destruct the cancer cell without hurt another healthy tissues

Page 3: Presentasi 9 Juni

NEUTRON SOURCE I AEA - Requ i remen t

Targeted Cells in deep area need neutron thermal to be captured by boron. Hence, its required epithermal neutron to accomodate moderation effect

If the beam intensity is less than required, exposing timing can be extended. it makes the others beam quality component values increasing. For that reason, beam quality is provided in ratio with epithermal comparison

0.5 eV

10 keVFast

Epitermal

Termal

Beam Intensity

Beam Quality

Page 4: Presentasi 9 Juni

RADIAL PIERCING BEAMPORTKartini Nuclear Reactor as Neutron Source for BNCT

15 cm 19 cm

156 cm117 cm

Reactor Core (Part 1) (Part 2)

Page 5: Presentasi 9 Juni

PART OF COLLIMATORFor Boron Neutron Capture Therapy

1. Collimator Wall

2. Moderator

3. Thermal Filter

4. Gamma Shield

5. Aperture (Output)

1. To keep the neutron flux stay high

2. To reduce the fast neutron and Contribute epithermal neutron (Shifting Methode)

3. To Absorb thermal neutron (Filtering Methode)

4. To Attenuate Gamma Ray5. To Control beam Convergenity

Page 6: Presentasi 9 Juni

MODELING & VALIDATIONKartini Nuclear Reactor using MCNP-5

Nuclear Reactor Critical Conditionkeff = 1,000 + 0,010

Criticality Result of Simulationkeff = 1.0008 ±0.0007

Flux Evaluation

Fuel Ring Simulation( X 1012 )

Reality( X 1012 )

B 1.52 1.78

C 1.37 1.56

D 1.27 1.14

E 1.13 1.14

F 1.21 1.12

According the data, Error of the parameter beetween simulation model result from MCNP-5 is relatively close with Field Experiment.

This reactor model is feasible to be neutron source in Collimator designing using MCNP-5

Page 7: Presentasi 9 Juni

MATER IALSummary of Collimator component

Collimator Part Recommendation material Best Availability

Collimator Wall Pb, Bi, PbF2 , Ni Ni (95 %)

Moderator Al, Al2O3, dan AlF3 Al 1350 (99.5 %)

Gamma Shield Pb, Bi PbFilter x 6Li , 10B , 60Ni -Aperture Pb, Bi, PbF2 , Ni Ni (95 %)

Additional Safety Control

Boral Boral

Mechanical Engineering UNY partnership

Some material is unavailable in indonesia, especially the pure version. In this case, we use another material with impurity that can subtitute the pure version

Page 8: Presentasi 9 Juni

COLLIMATOR WALLOptimation material and thickness

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

Fluks neutron epitermal Vs Collimator wall thickness of variation material

PbPolynomial (Pb)BiPolynomial (Bi)PbF2Polynomial (PbF2)NiPolynomial (Ni)

Collimator wall thickness (cm)

Φep

i (n/

cm2)

x 1

09

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.50

0.5

1

1.5

2

2.5

3

Fluks neutron epitermal Vs Collimator wall thickness of Ni 95%

Collimator wall thickness (cm)

Φep

i (n/

cm2)

x 1

09

Unsure Isotop (NA) % σa barn

Ni – nat

58Ni (68.07%) , 60Ni (26.23%),

61Ni (1.14 %), 62Ni (3.64%),64Ni (0.926%),

95 4.619

Mn - 55 55Mn (100%), 1.5 13.4118

Fe - nat54Fe (5.8%) , 56Fe (91.72%),57Fe (2.2 %), 58Fe (0.28%), 1 2.585

Si - nat28Si (92.23%) , 29Si

(4.67%),30Si (3.1 %),

0.5 0.1691

Cu - nat 64Cu (69.15%), Cu (30.9%) 1 4.4678C - nat 12C (98.9%), 13C (1.1%) 0.5 0.0034

Ti – nat 46Ti (8.0%), 47Ti (7.3%),

48Ti (73.8%), 49Ti (5.5%), 50Ti (5.4%)

0.5 17.294

Material Impurity

in 95 % of nickel, there is a shifting of peak point flux optimation

Several unsure in this material have greater absorption cross section than nickel. it makes shifting of peek point optimation happened.

Page 9: Presentasi 9 Juni

MODERATOROptimation material & thickness

5 10 15 20 25 300

1

2

3

4

5

Al Thickness (cm)

df/Φ

epi

x 10

-3

Thickness(cm) Φepi Ḋf / Φepi

5 1.16E+09 3.11E-11

6 1.5E+09 2.59E-11

7 7.72E+08 4.53E-11

8 1.96E+09 1.47E-11

5 1.16E+09 3.11E-11

6 1.5E+09 2.59E-11

7 7.72E+08 4.53E-11

8 1.96E+09 1.47E-11

9 1.47E+09 1.11E-11

10 1.07E+09 1.99E-11

Thickness (cm) Φepi Ḋf / Φepi

11 5.32E+08 5.56E-11

12 8.46E+08 3.42E-11

13 1.15E+08 9E-11

14 2.77E+08 8.45E-12

15 5.57E+08 7.1E-13

16 2.49E+08 2.47E-12

17 2.43E+08 1.63E-11

18 2.99E+08 1E-11

19 2.03E+08 4.53E-11

20 1.96E+08 9.83E-12

Al 1350 (99.5 %)

In this section, we were not only analyse the Fast neutron dose rate per epithermal flux, but also ephitermal neutron Flux it self

Page 10: Presentasi 9 Juni

GAMMA SHIELDOptimation material & thickness

Thickness (cm) Φepi Ḋγ / Φepi

Without Pb 5.57E+08 1.51E-11Pb 0.5 5.06E+08 1.44E-12

Pb 1 cm 4.05E+08 1.16E-13Pb 1.5 cm 4.02E+08 1.16E-13

Page 11: Presentasi 9 Juni

Thickness (cm) thermal epithermal Fast total

0.5 2.53E+05 8.21E+06 1.20E+07 2.05E+07

1 1.32E+05 5.88E+06 1.47E+07 2.07E+07

1.5 9.11E+04 9.84E+06 1.40E+07 2.40E+07

2 8.21E+04 8.64E+06 1.23E+07 2.11E+07

Aperture Surrounding

Thicknes (cm) Φepi Ḋf / Φepi Ḋγ / Φepi

0.5 5.12E+08 2.58E-13 1.20E-13

1 5.06E+08 2.49E-13 1.17E-13

1.5 5.03E+08 2.17E-13 1.16E-13

2 4.82E+08 2.26E-13 8.14E-13

Aperture Hole

BORAL ADDITIONALBoron – Aluminum

Page 12: Presentasi 9 Juni

FINAL RESULTof Collimator Design & Optimation

Parameter Value IAEA RequirementΦepi (n/cm2s) 5.03 x 108 > 1,0 x 109

Ḋf / Φepi (Gy-cm2 /n) 2.17 x 10-13 < 2,0 x 10-13 Ḋγ / Φepi (Gy-cm2 /n) 1.16 x10-13 < 2,0 x 10-13

Φth / Φepi 0.120 < 0,05 J / Φepi 0.835 > 0,7

Page 13: Presentasi 9 Juni

Minimum Requirement

Of Flux

Petten (NL) Espoo (Fin) Bariloche (Argt) Tokai (Jpn) Hsinchu (Taiwan)

Yogyakarta (Ina)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Neutron Flux

comparison

ANOTHER FACILITIESof BNCT therapy in the world

Page 14: Presentasi 9 Juni

Petten (NL) Espoo (Fin) Bariloche (Argt) Tokai (Jpn) Hsinchu (Taiwan) Yogyakarta (Ina)0

5

10

15

20

25

30Beam Qualitycomparison

Maximum gamma dose contamination

Minimum fast neutron dose contamination

Maximum thermal/epi ratio

ANOTHER FACILITIESof BNCT therapy in the world

Page 15: Presentasi 9 Juni

Thank’s for your attention

Page 16: Presentasi 9 Juni

Al - 27 C-Nat S-32 (95.02 %) Al2 O3 AlF3 Al2S3 D2O H2O CF20

5

10

15

20

25

30

35

40

45

50

Material Neutron Cross section Moderator (barn)

tampang lintang hamburan cepat tampang lintang hamburan epitermaltampang lintang serapan Cepat tampang lintang serapan Epitermal

Page 17: Presentasi 9 Juni

Scaterring cros section

redgreenbluepurpleLgreensoilredgreenbluepurpleLgreensoil

Page 18: Presentasi 9 Juni

Thermal filter material absorb cross section

Page 19: Presentasi 9 Juni

Aluminum 99.5 %Densitas Total (g/cm3)= 2.703245

Volume (cm3) = 3015.929

Massa (g) = 8152.796

No. Penyusun % berat Densitas Fraksi/ Densitas

1 Al 99.5 2.7 0.368519

2 Si 0.1 2.329 0.000429

3 Fe 0.4 7.874 0.000508

4 Cu 0.05 8.94 5.59E-05

5 Mn 0.01 7.21 1.39E-05

6 Ti 0.01 4.506 2.22E-05

7 Ga 0.03 5.91 5.08E-05

8 V 0.01 6 1.67E-05

9 Zn 0.05 7.14 7E-05

10 B 0.05 2.08 0.00024


Recommended