+ All Categories
Home > Engineering > Redes neuronales

Redes neuronales

Date post: 25-Jul-2015
Category:
Upload: santigo-marino
View: 38 times
Download: 3 times
Share this document with a friend
16
GRUPO # 2
Transcript
Page 1: Redes neuronales

GRUPO # 2

Page 2: Redes neuronales

Realizado Por:

Degember BravoEduardo PradoEledexys OjedaJenny UrdanetaJhon BerdugoMiguel BrachoNiosmer Aular

Luis ParraLuis Rodríguez

Luisangela RengelWilfer Alviarez

Page 3: Redes neuronales

En las última década las Redes Neuronales Artificiales (ANN) han recibido un interés particular como una tecnología para minería de datos, puesto que ofrece los medios para modelar de manera efectiva y eficiente problemas grandes y complejos. Los modelos de ANN son dirigidos a partir de los datos, es decir, son capaces de encontrar relaciones (patrones) de forma inductiva por medio de los algoritmos de aprendizaje basado en los datos existentes más que requerir la ayuda de un modelador para especificar la forma funcional y sus interacciones.

Las ANN son un método de resolver problemas, de forma individual o combinadas con otros métodos, para aquellas tareas de clasificación, identificación, diagnóstico, optimización o predicción en las que el balance datos/conocimiento se inclina hacia los datos y donde, adicionalmente, puede haber la necesidad de aprendizaje en tiempo de ejecución y de cierta tolerancia a fallos.

Estas neuronas artificiales se agrupan en capas o niveles y poseen un alto grado de conectividad entre ellas, conectividad que es ponderada por los pesos. A través de un algoritmo de aprendizaje supervisado o no supervisado, las ANN ajustan su arquitectura y parámetros de manera de poder minimizar alguna función de error que indique el grado de ajuste a los datos y la capacidad de generalización de las ANN.

INTRODUCCIÓN

Page 4: Redes neuronales

1.- REDES NEURONALES ARTIFICIALES

Una red neuronal artificial (ANN) es un esquema de computación distribuida inspirada en la estructura del sistema nervioso de los seres humanos. La arquitectura de una red neuronal es formada conectando múltiples procesadores elementales, siendo éste un sistema adaptivo que pose un algoritmo para ajustar sus pesos (parámetros libres) para alcanzar los requerimientos de desempeño del problema basado en muestras representativas. Es importante señalar que la propiedad más importantes de las redes neuronales artificiales es su capacidad de aprender a partir de un conjunto de patrones de entrenamientos, es decir, es capaz de encontrar un modelo que ajuste los datos. El proceso de aprendizaje también conocido como entrenamiento de la red puede ser supervisado o no supervisado. El aprendizaje supervisado consiste en entrenar la red a partir de un conjunto de datos o patrones de entrenamiento compuesto por patrones de entrada y salida. El objetivo del algoritmo de aprendizaje es ajustar los pesos de la red w de manera tal que la salida generada por la ANN sea lo más cercanamente posible a la verdadera salida dada una cierta entrada. Es decir, la red neuronal trata de encontrar un modelo al procesos desconocido que generó la salida y. Este aprendizaje se llama supervisado pues se conoce el patrón de salida el cual hace el papel de supervisor de la red. En cambio en el aprendizaje no supervisado se presenta sólo un conjunto de patrones a la ANN, y el objetivo del algoritmo de aprendizaje es ajustar los pesos de la red de manera tal que la red encuentre alguna estructura o configuración presente en los datos.

Page 5: Redes neuronales

2.- CARACTERÍSTICAS DE LAS REDES NEURONALES ARTIFICIALES

Las Redes Neuronales Artificiales, ANN (Artificial Neural Networks) están inspiradas en las redes neuronales biológicas del cerebro humano. Están constituidas por elementos que se comportan de forma similar a la neurona biológica en sus funciones más comunes. Estos elementos están organizados de una forma parecida a la que presenta el cerebro humano. Las ANN al margen de "parecerse" al cerebro presentan una serie de características propias del cerebro. Por ejemplo las ANN aprenden de la experiencia, generalizan de ejemplos previos a ejemplos nuevos y abstraen las características principales de una serie de datos.

Aprender: adquirir el conocimiento de una cosa por medio del estudio, ejercicio o experiencia. Las ANN pueden cambiar su comportamiento en función del entorno. Se les muestra un conjunto de entradas y ellas mismas se ajustan para producir unas salidas consistentes.

Generalizar: extender o ampliar una cosa. Las ANN generalizan automáticamente debido a su propia estructura y naturaleza. Estas redes pueden ofrecer, dentro de un margen, respuestas correctas a entradas que presentan pequeñas variaciones debido a los efectos de ruido o distorsión.

Abstraer: aislar mentalmente o considerar por separado las cualidades de un objeto. Algunas ANN son capaces de abstraer la esencia de un conjunto de entradas que aparentemente no presentan aspectos comunes o relativos.

Page 6: Redes neuronales

3.- ESTRUCTURA BÁSICA DE UNA RED NEURONAL 3.1.- Analogía con el cerebro La neurona es la unidad fundamental del sistema nervioso y en particular del cerebro. Cada neurona es una simple unidad procesadora que recibe y combina señales desde y hacia otras neuronas. Si la combinación de entradas es suficientemente fuerte la salida de la neurona se activa. La Figura (1.1) muestra las partes que constituyen una neurona.

El cerebro consiste en uno o varios billones de neuronas densamente interconectadas. El axón (salida) de la neurona se ramifica y está conectada a las dendritas (entradas) de otras neuronas a través de uniones llamadas sinapsis. La eficacia de la sinpasis es modificable durante el proceso de aprendizaje de la red.

Page 7: Redes neuronales

3.2.- Redes Neuronales Artificiales

En las Redes Neuronales Artificiales, ANN, la unidad análoga a la neurona biológica es el elemento procesador,PE (process element). Un elemento procesador tiene varias entradas y las combina, normalmente con una suma básica. La suma de las entradas es modificada por una función de transferencia y el valor de la salida de esta función de transferencia se pasa directamente a la salida del elemento procesador. La salida del PE se puede conectar a las entradas de otras neuronas artificiales (PE) mediante conexiones ponderadas correspondientes a la eficacia de la sinapsis de las conexiones neuronales. La Figura (1.2) representa un elemento procesador de una red neuronal artificial implementada en un ordenador.

Page 8: Redes neuronales

Una red neuronal consiste en un conjunto de unidades elementales PE conectadas de una forma concreta. El interés de las ANN no reside sólamente en el modelo del elemento PE sino en las formas en que se conectan estos elementos procesadores. Generalmente los elementos PE están organizados en grupos llamados niveles o capas. Una red típica consiste en una secuencia de capas con conexiones entre capas adyacentes consecutivas.

Existen dos capas con conexiones con el mundo exterior. Una capa de entrada, buffer de entrada, donde se presentan los datos a la red, y una capa buffer de salida que mantiene la respuesta de la red a una entrada. El resto de las capas reciben el nombre de capas ocultas. La Figura (1.3) muestra el aspecto de una Red Neuronal Artificial.

Page 9: Redes neuronales

4.- APLICACIONES DE LAS REDES NEURONALES ARTIFICIALES

Las características especiales de los sistemas de computación neuronal permiten que sea utilizada esta nueva técnica de cálculo en una extensa variedad de aplicaciones.

La computación neuronal provee un acercamiento mayor al reconocimiento y percepción humana que los métodos tradicionales de cálculo. Las redes neuronales artificiales presentan resultados razonables en aplicaciones donde las entradas presentan ruido o las entradas están incompletas. Algunas de las áreas de aplicación de las ANN son las siguientes:

Page 10: Redes neuronales

5.- FUNDAMENTOS DE LAS REDES NEURONALES ARTIFICIALES

5.1.- EL PROTOTIPO BIOLÓGICO Las diferentes configuraciones y algoritmos que se diseñan para las redes neuronales artificiales están inspiradas en la organización del complejo sistema neuronal del cerebro humano. No obstante conviene aclarar que esta inspiración no supone que las ANN lleguen a emular al cerebro como algunos optimistas lo desean ya que entre otras limitaciones el conocimiento sobre el modo de funcionamiento y comportamiento del cerebro es bastante simple y reducido. De hecho los diseñadores de redes artificiales van más lejos del conocimiento biológico actual y prueban nuevas estructuras que presentan un comportamiento adecuado y útil. La Figura (2.1) muestra la estructura de un par de neuronas biológicas.

Page 11: Redes neuronales

5.2.- LA NEURONA ARTIFICIAL

La neurona artificial fue diseñada para "emular" las características del funcionamiento básico de la neurona biológica. En esencia, se aplica un conjunto de entradas a la neurona, cada una de las cuales representa una salida de otra neurona. Cada entrada se multiplica por su "peso" o ponderación correspondiente análogo al grado de conexión de la sinapsis. Todas las entradas ponderadas se suman y se determina el nivel de excitación o activación de la neurona. Una representación vectorial del funcionamiento básico de una neurona artificial se indica según la siguiente expresión de la ecuación (2.1).

La Figura (2.2) representa una neurona artificial con una función de activación F.

Page 12: Redes neuronales

6.- Ventajas de las Redes Neuronales Debido a su constitución y a sus fundamentos, las RNA presentan un gran número de características semejantes a las del cerebro. Por ejemplo, son capaces de aprender de la experiencia, de generalizar de casos anteriores a nuevos casos, de abstraer características esenciales a partir de entradas que representan información irrelevante, etc. Esto hace que ofrezcan numerosas ventajas y que este tipo de tecnología se esté aplicando en múltiples áreas. Estas ventajas incluyen:

• Aprendizaje Adaptativo: Es una de las características más atractivas de las redes neuronales, es la capacidad de aprender a realizar tareas basadas en un entrenamiento o una experiencia inicial.

• Autoorganización: Las redes neuronales usan su capacidad de aprendizaje adaptativo para organizar la información que reciben durante el aprendizaje y/o la operación. Una RNA puede crear su propia organización o representación de la información que recibe mediante una etapa de aprendizaje. Esta autoorganización provoca la facultad de las redes neuronales de responder apropiadamente cuando se les presentan datos o situaciones a los que no habían sido expuestas anteriormente.

Page 13: Redes neuronales

• Tolerancia a Fallos: Comparados con los sistemas computacionales tradicionales, los cuales pierden su funcionalidad en cuanto sufren un pequeño error de memoria, en las redes neuronales, si se produce un fallo en un pequeño número de neuronas, aunque el comportamiento del sistema se ve influenciado, sin embargo no sufre una caída repentina.

• Operación en Tiempo Real: Los computadores neuronales pueden ser realizados en para el, y se diseñan y fabrican máquinas con hardware especial para obtener esta capacidad.

• Fácil inserción dentro de la tecnología existente. Debido a que una red puede ser rápidamente entrenada, comprobada, verificada y trasladada a una implementación hardware de bajo costo, es fácil insertar RNA para aplicaciones específicas dentro de sistemas existentes (chips, por ejemplo). De esta manera, las redes neuronales se pueden utilizar para mejorar sistemas de forma incremental, y cada paso puede ser evaluado antes de acometer un desarrollo más amplio.

Page 14: Redes neuronales

7.- METODOLOGIA DE DESARROLLO DE LA RED NEURONAL

Una aplicación de redes neuronales artificiales, comprende varias fases o etapas, para el desarrollo y validación de la estructura se tienen las siguientes fases:

Definición de la red neuronal Se determina el número de neuronas de las capas de entrada, oculta y salida, así como también las diferentes funciones de activación que se utilizarán en las neuronas de la capa oculta y salida.

Entrenamiento de la red neuronal En esta etapa se define el tipo de entrenamiento que se realizará, si es aprendizaje supervisado o no supervisado, también se determinan los algoritmos de entrenamiento.

Utilización de la red neuronal La fase de utilización es propiamente la ejecución de la estructura de la red, se inicia cuando se presenta una entrada a la red y termina generando una salida en función a las entradas proporcionadas.

Page 15: Redes neuronales

Mantenimiento de la red neuronal Sobre el mantenimiento se puede decir que la mayoría de las redes se entrenan para solucionar problemas dinámicos, por lo tanto es necesaria e indispensable una validación continua para garantizar una buena utilización. A medida que transcurra el tiempo podrán surgir nuevos conjuntos de datos reales aún desconocidos por la red, y de esta forma, será necesario un nuevo aprendizaje o, dependiendo del caso realizar una nueva definición.

En la Fig. N° 8 se muestra las fases del desarrollo de una estructura de red neuronal, ciclo de vida de la red neuronal.

Una red neuronal, consta de dos momentos de explicación de su procesamiento; el momento de aprendizaje y el momento de utilización o aplicación de la estructura de la red.

Page 16: Redes neuronales

CONCLUSIONES

Las Redes Neuronales Artificiales basadas en los sistemas nerviosos biológicos reproducen al menos el funcionamiento del cerebro humano, sea en hardware o software, El aprendizaje de sistemas neuronales directas tiene un proceso mediante el empleo del algoritmo de retropropagación (backpropagation), realizando el ajuste de pesos entre las capas de la red. La construcción de las redes neuronales artificiales hace uso de metodologías de desarrollo de software.

Las redes neuronales artificiales tienen un amplio campo de aplicaciones donde se requiera la solución a problemas, desde actividades de investigación hasta aplicaciones comerciales e industriales.


Recommended